By: Jim Herrmann – Founder & Principal Engineer
Client: Medical Imaging Device Manufacturer
The client had identified several “show-stopper” issues (including various image artifacts and other reliability concerns) with their “production intent” design.
At that time-critical juncture, they asked Re:Build AppliedLogix to jump in and critically assess the system design end-to-end, generate a findings and recommendations summary, and then proceed to modify and enhance the design as needed to make it truly production-ready.
When developing a product, it’s super important that everyone works closely together, as a unified team, regardless of whether that team is spread across multiple companies or all in-house. In this case, it was even more important because we were dealing with the regulated world of medical devices, where the development processes are often more rigorous. From the start, the Re:Build AppliedLogix team integrated its efforts within and under the client’s ISO quality process. Thereby avoiding any new speedbumps within their FDA 510(K) approval process.
The Re:Build AppliedLogix team needed to:
Re:Build AppliedLogix assembled a multi-functional team, deployed onto the customer’s site, and then built-out a “war-room” of sorts to maximize the daily flow of information and accelerate the entire process. The team operated across multiple engineering domains in-parallel: hardware, software, FPGA, and firmware. A lot of pieces needed to come together quickly and all play nicely together.
The Re:Build AppliedLogix team completed, what is best described as a complete revamping of the embedded hardware and software, in 3 phases:
A combined team effort between the client and Re:Build AppliedLogix led to a final production design that met all of its operational and performance targets, enabling a successful product launch (this was the client’s first revenue-bearing product, so successful product launch was all the more critical).
The initial launch device, targeted at clinicians, offered a “desk-side” confocal laser microscope platform, loosely tethered to a host PC/Windows platform. This revolutionary system delivered non-invasive, real-time imaging of human skin tissue at the cellular level. These unique capabilities enabled scientists and physicians to characterize cellular structures that are otherwise invisible to the naked eye.
The key functional design elements for the embedded controller subsystem included:
In addition to the embedded controller subsystem, a custom PCIe-based host interface card and associated device driver software were also designed. This card (10-layer, controlled impedance) was FPGA-based with local DDR3 memory for the image path buffering and control.
Let’s talk about your unique challenges and how Re:Build AppliedLogix can help you.
Re:Build AppliedLogix
3495 Winton Place
Building C Suite 2
Rochester, NY 14623
All rights reserved Re:Build Manufacturing – AppliedLogix ©2024